
Property-Directed Shape Analysis

S. Itzhaky1, N. Bjørner2, T. Reps3,4, M. Sagiv1, and A. Thakur3

1 Tel Aviv University, Tel Aviv, Israel
2 Microsoft Research, USA

3 University of Wisconsin–Madison, USA
4 GrammaTech, Inc., USA

Abstract. This paper addresses the problem of automatically generating quan-
tified invariants for programs that manipulate singly and doubly linked-list data
structures. Our algorithm is property-directed—i.e., its choices are driven by the
properties to be proven. The algorithm is able to establish that a correct pro-
gram has no memory-safety violations—e.g., null-pointer dereferences, double
frees—and that data-structure invariants are preserved. For programs with errors,
the algorithm produces concrete counterexamples.

More broadly, the paper describes how to integrate IC3 with full predicate ab-
straction. The analysis method is complete in the following sense: if an inductive
invariant that proves that the program satisfies a given property is expressible as a
Boolean combination of a given set of predicates, then the analysis will find such
an invariant. To the best of our knowledge, this method represents the first shape-
analysis algorithm that is capable of (i) reporting concrete counterexamples, or
alternatively (ii) establishing that the predicates in use are not capable of proving
the property in question.

1 Introduction

The goal of our work is to automatically generate quantified invariants for programs that
manipulate singly-linked and doubly-linked list data structures. For a correct program,
the invariant generated ensures that the program has no memory-safety violations, such
as null-pointer dereferences, and that data-structure invariants are preserved. For a pro-
gram in which it is possible to have a memory-safety violation or for a data-structure
invariant to be violated, the algorithm produces a concrete counterexample. Although
in this paper we mainly discuss memory-safety properties and data-structure invariants,
the technique can be easily extended to other correctness properties (see §5).

To the best of our knowledge, our method represents the first shape-analysis algo-
rithm that is capable of (i) reporting concrete counterexamples, or alternatively (ii) es-
tablishing that the abstraction in use is not capable of proving the property in question.
This result is achieved by combining several existing ideas in a new way:

– The algorithm uses a predicate-abstraction domain [12] in which quantified pred-
icates express properties of singly and doubly linked lists. In contrast to most re-
cent work, which uses restricted forms of predicate abstraction—such as Cartesian
abstraction [1]—our algorithm uses full predicate abstraction (i.e., the abstraction
uses arbitrary Boolean combinations of predicates).
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– The abstraction predicates and language semantics are expressed in recently devel-
oped reachability logics, AFR and EAR, respectively, which are decidable using a
reduction to SAT [17].

– The algorithm is property-directed—i.e., its choices are driven by the memory-
safety properties to be proven. In particular, the algorithm is based on IC3 [3],
which we here refer to as property-directed reachability (PDR).

PDR integrates well with full predicate abstraction: in effect, the analysis obtains
the same precision as the best abstract transformer for full predicate abstraction, without
ever constructing the transformers explicitly. In particular, we cast PDR as a framework
that is parameterized on

– the logic L in which the semantics of program statements are expressed, and
– the finite set of predicates that define the abstract domain A in which invariants

can be expressed. An element of A is an arbitrary Boolean combination of the
predicates.

Furthermore, our PDR framework is relatively complete with respect to the given ab-
straction. That is, the analysis is guaranteed to terminate and either (i) verifies the given
property, (ii) generates a concrete counterexample to the given property, or (iii) reports
that the abstract domain is not expressive enough to establish the proof. Outcome (ii)
is possible because the “frame” structure maintained during PDR can be used to build
a trace formula; if the formula is satisfiable, the model can be presented to the user as
a concrete counterexample. Moreover, if the analysis fails to prove the property or find
a concrete counterexample (outcome (iii)), then there is no way to express an inductive
invariant that establishes the property in question using a Boolean combination of the
abstraction predicates. Note that outcome (iii) is a much stronger guarantee than what
other approaches provide in such cases when they neither succeed nor give a concrete
counterexample.

Key to instantiating the PDR framework for shape analysis was a recent develop-
ment of the AFR and EAR logics for expressing properties of linked lists [17]. AFR is
used to define abstraction predicates, and EAR is used to express the language seman-
tics. AFR is a decidable, alternation-free fragment of first-order logic with transitive
closure (FOTC). When applied to list-manipulation programs, atomic formulas of AFR

can denote reachability relations between memory locations pointed to by pointer vari-
ables, where reachability corresponds to repeated dereferences of next or prev fields.
One advantage of AFR is that it does not require any special-purpose reasoning ma-
chinery: an AFR formula can be converted to a formula in “effectively propositional”
logic, which can be reduced to SAT solving. That is, in contrast to much previous work
on shape analysis, our method makes use of a general purpose SMT solver, Z3 [5]
(rather than specialized tools developed for reasoning about linked data structures, e.g.,
[25, 6, 2, 11]).

The main restriction in AFR is that it allows the use of a relation symbol f ∗ that
denotes the transitive closure of a function symbol f , but only limited use of f itself.
Although this restriction can be somewhat awkward, it is mainly a concern for the
analysis designer (and the details have already been worked out in [17]). As a language
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Name Description Mnemonic
x = y equality
x 〈f 〉y x->f = y
x 〈f ∗〉y an f path from x to y
f .ls [x , y ] unshared f linked-list segment between x and y
alloc(x ) x points to an allocated element St
f .stable(h) any f -path from h leads to an allocated element St
f /b.rev [x , y ] reversed f /b linked-list segment between x and y R
f .sorted [x , y ] sorted f list segment between x and y S

Table 1. Predicates for expressing various properties of linked lists whose elements hold data val-
ues. x and y denote program variables that point to list elements or null. f and b are parameters
that denote pointer fields. (The mnemonics are referred to in Table 6.)

for expressing invariants, AFR provides a fairly natural abstraction, which means that
analysis results should be understandable by non-experts (see §2).5

Our work represents the first algorithm for shape analysis that either (i) succeeds,
(ii) returns a concrete counterexample, or (iii) returns an abstract trace showing that
the abstraction in use is not capable of proving the property in question. The specific
contributions of our work include

– A framework, based on the PDR algorithm, for finding an inductive invariant in
a certain logic fragment (abstract domain) that allows one to prove that a given
pre-/post-condition holds or find a concrete counter-example to the property, or, in
the case of a negative result, the information that there is no inductive invariant
expressible in the abstract domain (§3).

– An instantiation of the framework for finding invariants of programs that manip-
ulate singly-linked or doubly-linked lists. This instantiation uses AFR to define a
simple predicate-abstraction domain, and is the first application of PDR to establish
quantified invariants of programs that manipulate linked lists (§4).

– An empirical evaluation showing the efficacy of the PDR framework for a set of
linked-list programs (§5).

2 A Motivating Example
To illustrate the analysis, we use the procedure insert, shown in Fig. 1, that inserts
a new element pointed to by e into the non-empty, singly-linked list pointed to by h.
insert is annotated with a pre-condition and a post-condition.

Table 1 shows a set of predicates for expressing properties of linked lists whose ele-
ments hold data values. The predicates above the horizontal line in Table 1 are inspired
by earlier work on shape analysis [13] and separation logic [24].

Given an input procedure, optionally annotated with a pre-condition Pre and post-
condition Post (expressed as formulas over the same vocabulary of predicates); the goal
of the analysis is to compute an invariant for the head of each loop 6 expressed as a CNF
formula over the predicates given in Table 1 (and their negations).

5 By a “non-expert”, we mean someone who has no knowledge of either the analysis algorithm,
or the abstraction techniques used inside the algorithm.

6 The current implementation supports procedures with only a single loop; however, this restric-
tion is not an essential limitation of our technique.
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void insert(List e, List h, List x) {
Requires: h 6= null ∧ h〈n+〉x ∧ x 〈n∗〉null ∧ e 6= null ∧ e〈n〉null ∧ ¬h〈n∗〉e
Ensures: h 6= null ∧ h〈n∗〉e ∧ e〈n〉x ∧ x 〈n∗〉null
p = h;
q = null;
while (p != x && p != null) {
q = p;
p = p->n;

}
q->n = e;
e->n = p;

}

Fig. 1. A procedure to insert the element pointed to by e into the non-empty, singly-linked list
pointed by h.

The task is not trivial because (i) a loop invariant may be more complex than a pro-
gram’s pre-condition or post-condition, and (ii) it is infeasible to enumerate all the po-
tential invariants expressible as CNF formulas over the predicates shown in Table 1. For
instance, there are 6 variables in insert (including null), and hence 26×6×6 clauses
can be created from the 36 possible instantiations of each of the 6 binary predicates in
Table 1. Therefore, the number of candidate invariants that can be formulated with these
predicates is more than 22

6×6×6

. It would be infeasible to investigate them all explicitly.
Our analysis algorithm is based on property-directed reachability [3]. It starts with

the trivial invariant true, which is repeatedly refined until it becomes inductive.7 On
each iteration, a concrete counterexample to inductiveness is used to refine the invariant
by excluding predicates that are implied by that counterexample.

When applied to the procedure in Fig. 1, our analysis algorithm terminated in about
24 seconds, and inferred the following 13-clause loop invariant:

q 6= e ∧ (h〈n∗〉x ∧ p = x → h〈n∗〉q) ∧ (p = x → q〈n〉p)
∧ (¬e〈n〉e) ∧ (q〈n∗〉p → q〈n〉p) ∧ (h〈n∗〉p ∨ p = null)
∧ (e〈n〉null) ∧ (x = null ∨ p〈n∗〉x ) ∧ (q 6= x ∨ p 6= null)
∧ ¬h〈n∗〉e ∧ (p = null→ h〈n∗〉q) ∧ (p = q ∨ q〈n〉p)

∧ (h〈n∗〉q ∧ h〈n∗〉x → h〈n〉q ∨ q〈n∗〉x )

(1)

This loop invariant also guarantees that the code is memory safe. It is also possible
to apply the analysis to infer sufficient conditions for memory safety using true post-
conditions.

Our analysis is also capable of finding concrete counterexamples when the proce-
dure violates the specification. For example, when the conjunct “x 6= h” is added to
the precondition in Fig. 1 and “e 6= null” is removed, the algorithm returns the coun-
terexample trace shown in Fig. 2. Not surprisingly, e is null in the first state at the
loop head (Fig. 1(a)). The loop body executes once, at which point we reach the loop

7 An invariant I is inductive at the entry to a loop if whenever the code of the loop body is
executed on an arbitrary state that satisfies both I and the loop condition, the result is a state
that satisfies I .
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null e q h p x

v1 v2 v3 v4 v5 v6 v7v0

(a)

null e q h p x

v1 v2 v3 v4 v5 v6 v7v0

(b)

Fig. 2. A two-state counterexample trace obtained from the algorithm when it is applied to a
version of Fig. 1 in which the conjunct x 6= h was added to the precondition and e 6= null was
removed. (a) First state at the loop head; (b) second state at the loop head, at which point the loop
exits, and a null-dereference violation subsequently occurs.

Algorithm 1: PDRA(Init, ρ,Bad)

1 R[−1] := false
2 R[0] := true
3 N := 0
4 while true do
5 if there exists 0 ≤ i < N

such that R[i ] = R[i +1]
then

6 return valid
7 (r ,A) := CheckA(Bad,R[N ])
8 if r = unsat then
9 N := N + 1

10 R[N ] := true

11 else
12 reduceA(N ,A)

Algorithm 2: reduceA(j ,A)
1 (r ,A1) := CheckA(Init,A)
2 if r = sat then
3 σ := Model(Init ∧ ρN−j ∧ (Bad)′×(N−j)

)
4 if σ is None then error “abstraction failure”
5 else error “concrete counterexample(σ)”
6 while true do
7 (r ,A2) :=
8 CheckA((Init)

′ ∨ (R[j − 1] ∧ ρ), (A)′)
9 if r = unsat then break

10 else reduceA(j − 1,A2)

11 for i = 0 . . . j do
12 R[i ] := R[i ] ∧ (¬A1 ∨ ¬A2)

head in the state shown in Fig. 1(b). The loop then exits, and there is a null-dereference
violation on e in the statement e->next = p.

3 Property-Directed Reachability

In this section, we present an adaptation of the IC3 algorithm that uses predicate ab-
straction. In this paper, by predicate abstraction we mean the technique that performs
verification using a given fixed set of abstraction predicates [9], and not techniques
that incorporate automatic refinement of the abstraction predicates; e.g. CEGAR. The
PDR algorithm shown in Alg. 1 is parameterized by a given finite set of predicates P
expressed in a logic L. The requirements on the logic L are:

R1 L is decidable (for satisfiability).
R2 The transition relation for each statement of the programming language can be

expressed as a two-vocabulary L formula.

Then for a particular program, we are given:

– A finite set of predicates P = {pi ∈ L}, 1 ≤ i ≤ n .
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– The transition relation of the system as a two-vocabulary formula ρ ∈ L.
– The initial condition of the system, Init ∈ L.
– The formula specifying the set of bad states, Bad ∈ L.

Let A be the full predicate abstraction domain over the predicates P . That is, each
element A ∈ A is an arbitrary Boolean combination of the predicates P . A ∈ A is
inductive with respect to Init and ρ if and only if Init → A and A ∧ ρ → (A)′. (ϕ)′

renames the vocabulary of constant symbols and relation symbols occurring in ϕ from
{c, . . . , r , . . .} to {c′, . . . , r ′, . . .}. ϕ is (ϕ)′ stripped of primes.

If the logic L is propositional logic, then Alg. 1 is an instance of IC3 [3]. Our
presentation is a simplification of more advanced variants [3, 7, 14]. For instance, the
presentation omits inductive generalization, although our implementation does imple-
ment inductive generalization (see §5). Furthermore, this simplified presentation brings
out the fact that the PDR algorithm is really an analysis framework that is parameterized
on the set of abstraction predicates P .

The algorithm employs an unbounded array R, where each frame R[i ] ∈ A over-
approximates the set of concrete states after executing the loop at most i times. The
algorithm maintains an integer N , called the frame counter, such that the following
invariants hold for all 0 ≤ i < N :

1. Init is a subset of all R[i ], i.e., Init→ R[i ].
2. The safety requirements are satisfied, i.e., R[i ]→ ¬Bad.
3. Each of the R[i + 1] includes the states in R[i ], i.e., R[i ]→ R[i + 1].
4. The successors of R[i ] are included in R[i + 1], i.e., for all σ, σ′ if σ |= R[i ] and
〈σ, σ′〉 |= ρ, then σ′ |= R[i + 1].

We illustrate the workings of the algorithm using a simple example, after which we
explain the algorithm in detail.

Example 1. Consider the program while (x != y) x = x.n; with precondi-
tion Init def

= y 6= null ∧ x 〈n+〉y . We wish to prove absence of null-dereference; that
is, Bad def

= x 6= y ∧ x = null.
Table 2 shows a trace of PDR running with this input; each line represents a SAT

query carried out by PDRA (line 7) or by reduceA (line 8). At each stage, if the result
(r ) is “unsat”, then either we unfold one more loop iteration (N := N + 1) or we
learn a new clause to add to R[j ] of the previous step, as marked by the “↗” symbol.
If the result is “sat”, the resulting model is used to further refine an earlier clause by
recursively calling reduceA.

On the first row, we start with R[0] = true, so definitely R[0] ∧ Bad is satisfiable,
for example with a model where x = y = null. The algorithm checks if this model repre-
sents a reachable state at iteration 0 (see the second row), and indeed it is not—the result
is “unsat” and the unsat-core is y = null (Init∧y = null is not satisfiable). Therefore, we
infer the negation, y 6= null, and add that to R[0]. The algorithm progresses in the same
manner—e.g., after two more lines, R[0] = (y 6= null∧x 6= null), and so on. Eventually,
the loop terminates when R[i ] = R[i + 1] for some i ; in this example, the algorithm
terminates because R[1] = R[2]. The resulting invariant is R[2] ≡ (y 6= null∧x 〈n∗〉y),
a slight generalization of Pre in this case. ut
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j Formula Model A := βA(Model) Inferred

0 R[0] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 6= null

−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ↗
0 R[0] ∧ Bad unsat
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x −
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 1) 1 7→ null A := x = y 6= null ∧ x 〈n∗〉y ∧ y〈n∗〉x x 6= y
−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ↗
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x −
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ (1, 2) 1, 2 7→ null A := x 6= y ∧ x , y 6= null ∧ ¬x 〈n∗〉y ∧ ¬y〈n∗〉x x 〈n∗〉y
−1 ((Init)′ ∨ (R[−1] ∧ ρ)) ∧ (A)′ unsat ↗
1 R[1] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 〈n∗〉y
0 ((Init)′ ∨ (R[0] ∧ ρ)) ∧ (A)′ unsat ↗
1 R[1] ∧ Bad unsat
2 R[2] ∧ Bad (null, 1) 1 7→ null A := x = null ∧ x 6= y ∧ ¬x 〈n∗〉y ∧ y〈n∗〉x x 〈n∗〉y
1 ((Init)′ ∨ (R[1] ∧ ρ)) ∧ (A)′ unsat ↗
R[1] = R[2] valid

Table 2. Example run with Init def
= y 6= null ∧ x 〈n+〉y , Bad def

= x 6= y ∧ x = null, and
ρ

def
= (x ′ = n(x )). The output invariant is I := x 〈n∗〉y .

Some terminology used in the PDR algorithm:
– Model(ϕ) returns a model σ satisfying ϕ if it exists, and None if it doesn’t.
– The abstraction of a model σ, denoted by βA(σ), is the cube of predicates from P

that hold in σ: βA(σ) =
∧
{p | σ |= p, p ∈ P} ∧

∧
{¬q | σ |= ¬q , q ∈ P}.

– Let ϕ ∈ L is a formula in the unprimed vocabulary, A ∈ A is a value in the
unprimed or primed vocabulary. CheckA(ϕ,A) returns a pair (r ,A1) such that
• if ϕ∧A is satisfiable, then r = sat and A1 is the abstraction of a concrete state

in the unprimed vocabulary. That is, if the given A is in the unprimed vocabu-
lary, then βA(σ) for some σ |= ϕ ∧ A; else if A is in the primed vocabulary,
then A1 = βA(σ) for some (σ, σ′) |= ϕ ∧A.

• if ϕ ∧ A is unsatisfiable, then r = unsat, and A1 is a predicate such that
A→ A1 and ϕ ∧A1 is unsatisfiable. The vocabulary of A1 is the same as that
of A. If A is in the primed vocabulary (as in line 8 of Alg. 2), CheckA drops
the primes from A1 before returning the value.

A valid choice for A1 in the unsatisfiable case would be A1 = A (and indeed the
algorithm would still be correct), but ideally A1 should be the weakest such pred-
icate. For instance, CheckA(false,A) should return (unsat, true). In practice,
when ϕ ∧ A is unsatisfiable, the A1 returned is an unsat core of ϕ ∧ A constructed
exclusively from conjuncts of A. Such an unsat core is a Boolean combination of
predicates in P , and thus is an element of A.

We now give a more detailed explanation of Alg. 1. Each R[i ], i ≥ 0 is initialized
to true (lines 2 and 10), and R[−1] is false. N is initialized to 0 (line 3). At line 5,
the algorithm checks whether R[i ] = R[i + 1] for some 0 ≤ i < N . If true, then an
inductive invariant proving unreachability of Bad has been found, and the algorithm
returns valid (line 6).

At line 7, the algorithm checks whether R[N ] ∧ Bad is satisfiable. If it is unsatis-
fiable, it means that R[N ] excludes the states described by Bad, and the frame counter
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N is incremented (line 9). Otherwise, A ∈ A represents an abstract state that satis-
fies R[N ] ∧ Bad. PDR then attempts to reduce R[N ] to try and exclude this abstract
counterexample by calling reduceA(N ,A) (line 12).

The reduce algorithm (Alg. 2) takes as input an integer j , 0 ≤ j ≤ N , and an
abstract state A ∈ A such that there is a path starting from A of length N−j that reaches
Bad. Alg. 2 tries to strengthen R[j ] so as to exclude A. At line 1, reduce first checks
whether Init∧A is satisfiable. If it is satisfiable, then there is an abstract trace of length
N−j from Init to Bad, using the transition relation ρ. The call to Model at line 3 checks
whether there exists a concrete model corresponding to the abstract counterexample.
ρk denotes k unfoldings of the transition relation ρ; ρ0 is true. (Bad)′×k denotes k
applications of the renaming operation (·)′ to Bad. If no such concrete model is found,
then the abstraction was not precise enough to prove the required property (line 4);
otherwise, a concrete counterexample to the property is returned (line 5).

Now consider the case when Init∧A is unsatisfiable on line 1. A1 ∈ A returned by
the call to CheckA is such that Init ∧A1 is unsatisfiable; that is, Init→ ¬A1.

The while-loop on lines 6–10 checks whether the (N − j )-length path to Bad can
be extended backward to an (N − j + 1)-length path. In particular, it checks whether
R[j − 1] ∧ ρ ∧ (A)′ is satisfiable. If it is satisfiable, then the algorithm calls reduce
recursively on j − 1 and A2 (line 10). If no such backward extension is possible, the
algorithm exits the while loop (line 9). Note that if j = 0, CheckA(R[j − 1] ∧ ρ,A)
returns (unsat, true), because R[−1] is set to false.

The conjunction of (¬A1 ∨ ¬A2) to R[i ], 0 ≤ i ≤ j , in the loop on lines 11–12
eliminates abstract counterexample A while preserving the required invariants on R.
In particular, the invariant Init → R[i ] is maintained because Init → ¬A1, and hence
Init→ (R[i ]∧(¬A1∨¬A2)). Furthermore, A2 is the abstract state from which there is a
(spurious) path of length N − j to Bad. By the properties of CheckA, ¬A1 and ¬A2 are
each disjoint from A, and hence (¬A1∨¬A2) is also disjoint from A. Thus, conjoining
(¬A1 ∨ ¬A2) to R[i ], 0 ≤ i ≤ j eliminates the spurious abstract counterexample A.
Lastly, the invariant R[i ] → R[i + 1] is preserved because (¬A1 ∨ ¬A2) is conjoined
to all R[i ], 0 ≤ i ≤ j , and not just R[j ].

Formally, the output of PDRA(Init, ρ,Bad) is captured by the following theorem:

Theorem 1. Given (i) the set of abstraction predicates P = {pi ∈ L}, 1 ≤ i ≤ n
where L is a decidable logic, and the full predicate abstraction domain A over P ,
(ii) the initial condition Init ∈ L, (iii) a transition relation ρ expressed as a two-
vocabulary formula in L, and (iv) a formula Bad ∈ L specifying the set of bad states,
PDRA(Init, ρ,Bad) terminates, and reports either

1. valid if there exists A ∈ A s.t. (i) Init→ A, (ii) A is inductive, and (iii) A→ ¬Bad,
2. a concrete counterexample trace, which reaches a state satisfying Bad, or
3. an abstract trace, if the inductive invariant required to prove the property cannot

be expressed as an element of A. ut

The proof of Theorem 1 in [18] is based on the observation that, when “abstraction
failure” is reported by reduceA(j ,A), the set of models σi |= R[i ] (j ≤ i < N )
represents an abstract error trace.
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Inductive Generalization. Each R[i ] is a conjunction of clauses ϕ1 ∧ · · · ∧ϕm . If we
detect that some ψj comprising a subset of literals of ϕj , it holds that R[i ] ∧ ρ ∧ ψj |=
(ψj )

′, then ψj is inductive relative to R[i ]. In this case, it is safe to conjoin ψj to R[k ]
for k ≤ i + 1. Spurious counter-examples can also be purged if they are inductively
blocked. The advantages of this method are explained thoroughly by Bradley [3].

4 Property-Directed Reachability for Linked-List Programs
In this section, we describe how PDRA(Init, ρ,Bad) described in Alg. 1 can be in-
stantiated for verifying linked-list programs. The key insight is the use of the recently
developed reachability logics for expressing properties of linked lists [17].

4.1 Reachability Logics

We use two related logics for expressing properties of linked data structures:

– AFR is a decidable fragment of first-order logic with transitive closure (FOTC),
which is an alternation-free quantified logic. This logic is used to express the ab-
straction predicates P , and pre- and post-conditions. It is closed under negation,
and decidable for both satisfiability and validity.

– EAR allows there to be universal quantifiers inside of existential ones. It is used to
define the transition formulas of statements that allocate new nodes and dereference
pointers. This logic is not closed under negation, and is only decidable for satisfia-
bility. We count on the fact that transition formulas are only used in a positive form
in the satisfiability queries in Alg. 1.

Although AFR is used as the language for defining the predicates in P , the wlp rules go
slightly outside of AFR, producing EAR formulas (see Table 5 below).

Definition 1. (EAR) A term, t , is a variable or constant symbol. An atomic formula
is one of the following: (i) t1 = t2; (ii) r(t1, t2, . . . , ta) where r is a relation sym-
bol of arity a (iii) A reachability constraint t1〈f ∗〉t2, where f is a function symbol. A
quantifier-free formula (QFR) is a boolean combination of atomic formulas. A univer-
sal formula begins with zero or more universal quantifiers followed by a quantifier-free
formula. An alternation-free formula (AFR) is a boolean combination of universal for-
mulas. EAR consists of formulas with quantifier-prefix ∃∗∀∗.

In particular, QFR ⊂ AFR ⊂ EAR. ut

Technically, EAR forbids any use of an individual function symbol f ; however,
when f defines an acyclic linkage chain—as in acyclic singly linked and doubly linked
lists—f can be defined in terms of f ∗ by using universal quantification to express that
an element is the closest in the chain to another element. This idea is formalized by
showing that for all α and β, f (α) = β ↔ Ef (α, β) where Ef is defined as follows:

Ef (α, β)
def
= α〈f +〉β ∧ ∀γ : α〈f +〉γ → β〈f ∗〉γ, (2)

where α〈f +〉β def
= α〈f ∗〉β ∧ α 6= β. However, because of the quantifier in Eqn. (2),

the right-hand side of Eqn. (2) can only be used in a context that does not introduce a
quantifier alternation (so that the formula remains in a decidable fragment of FOTC).
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Name Formula
x 〈f 〉y Ef (x , y)
f .ls [x , y ] ∀α, β : x 〈f ∗〉α ∧ α〈f ∗〉y ∧ β〈f ∗〉α→ (β〈f ∗〉x ∨ x 〈f ∗〉β)
f .stable(h) ∀α : h〈f ∗〉α→ alloc(α)

f /b.rev [x , y ] ∀α, β :

(
α 6= null ∧ β 6= null

∧ x 〈f ∗〉α ∧ α〈f ∗〉y ∧ x 〈f ∗〉β ∧ β〈f ∗〉y

)
→
(
α〈f ∗〉β ↔ β〈b∗〉α

)
f .sorted [x , y ] ∀α, β :

(
α 6= null ∧ β 6= null

∧ x 〈f ∗〉α ∧ α〈f ∗〉β ∧ β〈f ∗〉y

)
→ dle(α, β)

Table 3. AFR formulas for the derived predicates shown in Table 1. f and b denote pointer fields.
dle is an uninterpreted predicate that denotes a total order on the data values. The intention is
that dle(α, β) holds whenever α->d ≤ β->d , where d is the data field. We assume that the
semantics of dle are enforced by an appropriate total-order background theory.

A Predicate Abstraction Domain that uses AFR. The abstraction predicates used
for verifying properties of linked list programs were introduced informally in Table 1.
Table 3 gives the corresponding formal definition of the predicates as AFR formulas.
Note that all four predicates defined in Table 3 are quantified. (The quantified formula
for Ef is given in Eqn. (2).) In essence, we use a template-based approach for obtaining
quantified invariants: the discovered invariants have a quantifier-free structure, but the
atomic formulas can be quantified AFR formulas.

We now show that the EAR logic satisfies requirements R1 and R2 for the PDR
algorithm stated in §3.

Decidability of EAR. To satisfy requirement R1 stated in §3, we have to show that
EAR is decidable for satisfiability.

EAR is decidable for satisfiability because any formula in this logic can be trans-
lated into the “effectively propositional” decidable logic of ∃∗∀∗ formulas described by
Piskac et al. [22]. EAR includes relations of the form f ∗ (the reflexive transitive closure
of a function symbol f ), but only allows limited use of f itself.

Every EAR formula can be translated into an ∃∗∀∗ formula using the following
steps [17]: (i) add a new uninterpreted relation Rf , which is intended to represent reflex-
ive transitive reachability via f ; (ii) add the consistency rule ΓlinOrd shown in Table 4,
which asserts that Rf is a partial order, i.e., reflexive, transitive, acyclic, and linear;8

and (iii) replace all occurrences of t1〈f ∗〉t2 by Rf (t1, t2). (By means of this translation
step, acyclicity is built into the logic.)

Proposition 1 (Simulation of EAR). Consider EAR formula ϕ over vocabulary V =

〈C,F ,R〉. Let ϕ′ def
= ϕ[Rf (t1, t2)/t1〈f ∗〉t2]. Then ϕ′ is a first-order formula over vo-

cabulary V ′ = 〈C, ∅,R∪ {Rf : f ∈ F〉, and ΓlinOrd∧ϕ′ is satisfiable if and only if the
original formula ϕ is satisfiable.

This proposition is the dual of [16, Proposition 3, Appendix A.1] for validity of ∀∗∃∗
formulas.

8 Note that the order is a partial order and not a total order, because not every pair of elements
must be ordered.
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∀α : Rf (α, α) reflexivity
∧ ∀α, β, γ : Rf (α, β) ∧ Rf (β, γ)→ Rf (α, γ) transitivity
∧ ∀α, β : Rf (α, β) ∧ Rf (β, α)→ α = β acyclicity
∧ ∀α, β, γ : Rf (α, β) ∧ Rf (α, γ)→ (Rf (β, γ) ∨ Rf (γ, β)) linearity

Table 4. A universal formula, ΓlinOrd, which asserts that all points reachable from a given point
are linearly ordered.

Command C wlp(C ,Q)
assume ϕ ϕ→ Q
x = y Q [y/x ]
x = y->f y 6= null ∧ ∃α : (Ef (y , α) ∧Q [α/x ])
x->f = null x 6= null ∧Q [α〈f ∗〉β ∧ (¬α〈f ∗〉x ∨ β〈f ∗〉x )/α〈f ∗〉β]
x->f = y x 6= null ∧Q [α〈f ∗〉β ∨ (α〈f ∗〉x ∧ y〈f ∗〉β)/α〈f ∗〉β]
x = malloc() ∃α : ¬alloc(α) ∧Q [(alloc(β) ∨ (β = α ∧ β = x ))/alloc(β))]
free(x) alloc(x ) ∧Q [(alloc(β) ∧ β 6= x )/alloc(β))]

Table 5. Rules for wlp for atomic commands. alloc stands for a memory location that has been al-
located and not subsequently freed. Ef (y , α) is the universal formula defined in Eqn. (2). Q [y/x ]
denotes Q with all occurrences of atomic formula x replaced by y .

Axiomatic specification of concrete semantics in EAR. To satisfy requirement R2
stated in §3, we have to show that the transition relation for each statement Cmd of
the programming language can be expressed as a two-vocabulary formula ρ ∈ EAR.
Let wlp(Cmd,Q) be the weakest liberal precondition of command Cmd with respect
Q ∈ EAR. Then, the transition formula for command Cmd is wlp(Cmd, Id), where Id is
a two-vocabulary formula that specifies that the input and the output states are identical,
i.e.,

Id def
=
∧
c∈C

c = c′ ∧
∧
f∈F

∀α, β : α〈f ∗〉β ⇔ α〈f ′∗〉β.

To show that the concrete semantics of linked list programs can be expressed in
EAR, we have to prove that EAR is closed under wlp; that is, for all commands Cmd
and Q ∈ EAR, wlp(Cmd,Q) ∈ EAR.

Table 5 shows rules for computing wlp for atomic commands. Note that pointer-
related rules in Table 5 each include a memory-safety condition to detect null-
dereferences. For instance, the rule for “x->f = y” includes the conjunct “x 6=
null”; if, in addition, we wish to detect accesses to unallocated memory, the rule
would be extended with the conjunct “alloc(x )”.

The following lemma establishes the soundness and completeness of the wlp rules.

Lemma 1. Consider a command C of the form defined in Table 5 and postcondition
Q . Then, σ |= wlp(C ,Q) if and only if the execution of C on σ can yield a state σ′

such that σ′ |= Q .

This lemma is the dual of [16, Prop. 1, App. A.1] for validity of ∀∗∃∗ formulas.

11



Benchmark
Memory-safety

+ data-structure integrity Additional properties
A Time N # calls to Z3 # clauses A Time N # calls to Z3 # clauses

create 1.37 3 28 3 8.19 4 96 7
delete 14.55 4 61 6 9.32 3 67 7
deleteAll St 6.77 3 72 6 St 37.35 7 308 12
filter 2.37 3 27 4 55.53 5 94 5
insert 26.38 5 220 16 25.25 4 155 13
prev 0.21 2 3 0 11.64 4 118 6
last 0.33 2 3 0 7.49 3 41 4
reverse 5.35 5 128 4 146.42 6 723 11
sorted insert S 41.07 3 48 7 S 51.46 4 134 10
sorted merge 26.69 4 87 10 S 256.41 5 140 14
make doubly-linked 18.91 3 44 5 R 1086.61 5 112 8

Table 6. Experimental results. Column A signifies the set of predicates used (blank = only the
top part of Table 1; S = with the addition of the sorted predicate family; R = with the addition
of the rev family; St = with the addition of the stable family, where alloc conjuncts are added
in wlp rules). Running time is measured in seconds. N denotes the highest index for a generated
element R[i ]. The number of clauses refers to the inferred loop invariant.

Weakest liberal preconditions of compound commands C1;C2 (sequencing) and
C1|C2 (nondeterministic choice) are defined in the standard way, i.e.,

wlp(C1;C2,Q)
def
= wlp(C1,wlp(C2,Q)) wlp(C1|C2,Q)

def
= wlp(C1,Q) ∧ wlp(C2,Q)

Consider a program with a single loop “while Cond do Cmd”. Alg. 1 can be
used to prove whether or not a precondition Pre ∈ AFR before the loop implies that a
postcondition Post ∈ AFR holds after the loop, if the loop terminates: we supply Alg. 1
with Init def

= Pre, ρ def
= Cond ∧ wlp(Cmd, Id) and Bad def

= ¬Cond ∧ ¬Post. Furthermore,
memory safety can be enforced on the loop body by setting Bad def

= (¬Cond∧¬Post)∨
(Cond ∧ ¬wlp(Cmd, true)).

5 Experiments

To evaluate the usefulness of the analysis algorithm, we applied it to a collection of
sequential procedures that manipulate singly and doubly-linked lists (see Table 6). For
each program, we report the predicates used, the time (in seconds), the number of PDR
frames, the number of calls to Z3, and the size of the resulting inductive invariant, in
terms of the number of clauses. All experiments were run on a 1.7GHz Intel Core i5
machine with 4GB of RAM, running OS X 10.7.5. We used version 4.3.2 of Z3 [5],
compiled for a 64-bit Intel architecture (using gcc 4.2 and LLVM).

For each of the benchmarks, we verified that the program avoids null-
dereferences, as well as that it preserves the data-structure invariant that the inputs
and outputs are acyclic linked-lists. In addition, for some of the benchmarks we were
also able to verify some additional correctness properties. While full functional cor-
rectness, or even partial correctness, is hard to achieve using predicate abstraction, we
were able to use simple formulas to verify several interesting properties that go beyond
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Benchmark Property checked
create Some memory location pointed to by x (a global variable) that was allocated

prior to the call, is not reachable from the list head, h.
delete The argument x is no longer reachable from h.
deleteAll An arbitrary non-null element x of the list becomes non-allocated.
filter Two arbitrary elements x and y that satisfy the filtering criterion and have an

n-path between them, maintain that path.
insert The new element e is reachable from h and is the direct predecessor of the

argument x.
last The function returns the last element of the list.
prev The function returns the element just before x, if one exists.
reverse If x comes before y in the input, then x should come after y in the output.
sorted insert The list rooted at h remains sorted.
make doubly-linked The resulting p is the inverse of n within the list rooted at h.

Table 7. Some correctness properties that can be verified by the analysis procedure. For each of
the programs, we have defined suitable Pre snf Post formulas in AFR.

Automatic bug finding
Benchmark Bug description Time N # calls to Z3 c.e. size
insert Precondition is too weak (omitted e 6= null) 4.46 1 17 8
filter Potential null dereference 6.30 1 21 3

Typo: list head used instead of list iterator 103.10 3 79 4
reverse Corrupted data structure: a cycle is created 0.96 1 9 2

Table 8. Results of experiments with buggy programs. Running time is measured in seconds. N
denotes the highest index for a generated element R[i ]. “C.e. size” denotes the largest number of
individuals in a model in the counterexample trace.

memory-safety properties and data-structure invariants. Table 7 describes the proper-
ties we checked for the various examples. As seen from columns 3, 4, 8, and 9 of the
entries for delete and insert in Table 6, trying to prove stronger properties can
sometimes result in fewer iterations being needed, resulting in a shorter running time.
In the remainder of the examples, handling additional properties beyond memory-safety
properties and data-structure invariants required more processing effort, which can be
attributed mainly to the larger set of symbols (and hence predicates) in the computation.

Bug Finding. We also ran our analysis on programs containing deliberate bugs, to
demonstrate the utility of this approach to bug finding. In all of the cases, the method
was able to detect the bug and generate a concrete trace in which the safety or cor-
rectness properties are violated. The output in that case is a series of concrete states
σ0..σN where each σi contains the set of heap locations, pointer references, and pro-
gram variables at step i . The experiments and their results are shown in Table 8. We
found both the length of the trace and the size of the heap structures to be very small.
Their small size makes the traces useful to present to a human programmer, which can
help in locating and fixing the bug.

Observations. It is worth noting that for programs where the proof of safety is trivial—
because every access is guarded by an appropriate conditional check, such as in prev

and last—the algorithm terminates almost immediately with the correct invariant
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true. This behavior is due to the property-directedness of the approach, in contrast
with abstract interpretation, which always tries to find the least fixed point, regardless
of the desired property.

We experimented with different refinements of inductive-generalization (§3). Our
algorithm could in many cases succeed without it, but without the most basic version
that just pushes each clause (without removing literals), we observed runs with up to
N = 40 iterations. On the other hand, the more advanced versions of inductive general-
ization did not help us: trying to remove literals resulted in a large number of expensive
(and useless) solver calls; and blocking spurious counter-examples using inductive gen-
eralization also turned out to be quite expensive in our setting.

We also noticed that the analysis procedure is sensitive to the number of abstraction
predicates used. In particular, using predicates whose definitions involve quantifiers
can affect the running time considerably. When the predicate families f .sorted [x , y ]
and f /b.rev [x , y ] are added to A, running times can increase substantially (about 20-
60 times). This effect occurred even in the case of sorted merge, where we did not
attempt to prove an additional correctness property beyond safety and integrity—and
indeed there were no occurrences of the added predicates in the loop invariant obtained.
As can be seen from Table 6, the PDR algorithm per se is well-behaved, in the sense
that the number of calls to Z3 increased only modestly with the additional predicates.
However, each call to Z3 took a lot more time.

6 Related Work
The literature on program analysis is vast, and the subject of shape analysis alone has
an extensive literature. Thus, in this section we are only able to touch on a few pieces
of prior work that relate to the ideas used in this paper.
Predicate abstraction. Houdini [8] is the first algorithm of which we are aware that
aims to identify a loop invariant, given a set of predicates as candidate ingredients.
However, Houdini only infers conjunctive invariants from a given set of predicates.
Santini [29, 28] is a recent algorithm for discovering invariants expressed in terms of
a set of candidate predicates. Like our algorithm, Santini is based on full predicate
abstraction (i.e., it uses arbitrary Boolean combinations of a set of predicates), and
thus is strictly more powerful than Houdini. Santini could make use of the predicates
and abstract domain described in this paper; however, unlike our algorithm, Santini
would not be able to report counterexamples when verification fails. Other work infers
quantified invariants [27, 15] but does not support the reporting of counterexamples.
Templates are used in many tools to define the abstract domains used to represent sets
of states, by fixing the form of the constraints permitted. Template Constraint Matrices
[26] are based on inequalities in linear real arithmetic (i.e., polyhedra), but leave the
linear coefficients as symbolic inputs to the analysis. The values of the coefficients are
derived in the course of running the analysis. In comparison, a coefficient in our use of
EAR corresponds to one of the finitely many constants that appear in the program, and
we instantiated our templates prior to using PDR.

As mentioned in §1, PDR meshes well with full predicate abstraction: in effect, the
analysis obtains the benefit of the precision of the abstract transformers for full pred-
icate abstraction, without ever constructing the abstract transformers explicitly. PDR
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also allows a predicate-abstraction-based tool to create concrete counterexamples when
verification fails.

Abstractions based on linked-list segments. In this paper, our abstract domain is
based on formulas expressed in AFR, which has very limited capabilities to express
properties of stretches of data structures that are not pointed to by a program variable.
This feature is similar to the self-imposed limitations on expressibility used in a num-
ber of past approaches, including (a) canonical abstraction [25]; (b) a prior method for
applying predicate abstraction to linked lists [21]; (c) an abstraction method based on
“must-paths” between nodes that are either pointed to by variables or are list-merge
points [19]; and (d) domains based on separation logic’s list-segment primitive [6, 2]
(i.e., “ls[x , y ]” asserts the existence of a possibly empty list segment running from the
node pointed to by x to the node pointed to by y). Decision procedures have been used
in previous work to compute the best transformer for individual statements that manip-
ulate linked lists [30, 23].

STRAND and elastic quantified data automata. Recently, Garg et al. developed
methods for obtaining quantified invariants for programs that manipulate linked lists
via an abstract domain of quantified data automata [10, 11]. To create an abstract do-
main with the right properties, they use a weakened form of automaton—so-called elas-
tic quantified data automata—that is unable to observe the details of stretches of data
structures that are not pointed to by a program variable. (Thus, an elastic automaton
has some of the characteristics of the work based on linked-list segments described
above.) An elastic automaton can be converted to a formula in the decidable fragment
of STRAND over lists [20].

Other work on IC3/PDR. Our work represents the first application of PDR to programs
that manipulate dynamically allocated storage. We chose to use PDR because it has been
shown to work extremely well in other domains, such as hardware verification [3, 7].
Subsequently, it was generalized to software model checking for program models that
use linear real arithmetic [14] and linear rational arithmetic [4]. Cimatti and Griggio [4]
employ a quantifier-elimination procedure for linear rational arithmetic, based on an
approximate pre-image operation. Our use of a predicate-abstraction domain allows us
to obtain an approximate pre-image as the unsat core of a single call to an SMT solver
(line 8 of Alg. 2).

7 Conclusion

Compared to past work on shape analysis, our approach (i) is based on full predicate
abstraction, (ii) makes use of standard theorem proving techniques, (iii) is capable of
reporting concrete counterexamples, and (iv) is based on property-directed reachability.
The experimental evaluation in §5 illustrates these four advantages of our approach.
The algorithm is able to establish memory-safety and preservation of data-structure
invariants for all of the examples, using only the simple predicates given in Table 1.
This result is surprising because earlier work on shape analysis that employed the same
predicates [13] failed to prove these properties. One reason is that [13] only uses positive
and negative combinations of these predicates, whereas our algorithm uses arbitrary
Boolean combinations of predicates.
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